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Why ORBIT ?Why ORBIT ?
● We considered a variety of existing codes

● ORBIT was selected as our primary tool because of: 
� Source code and documentation publicly available 

� Well-developed diagnostics (tune footprints, moment evolution etc .. )

� Some validation at existing machines (PSR)

� Support for both decoupled transverse and longitudinal  (21/2D) 
and  3D space charge

� Support for parallel execution (MPI)

● Note: (Synergia) - essentially a derivative of IMPACT (developed to study 
halo in high intensity linacs) is also under development at FNAL. The focus is 
“full 3D” simulation in synchrotrons.  Cross checks are useful and important 
for validation of both ORBIT and Synergia.
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Beam Physics Dept ParallelBeam Physics Dept Parallel
Linux ClusterLinux Cluster

32 2-CPU Nodes (1.4 Ghz AMD Athlon)
1 Gbyte RAM / Node
Gigabit Ethernet
Total Cost: 65 K$

Adequate for 21/2 D simulations. 

100-1000 turns with O(105) macro particles.
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Code DevelopmentCode Development

Recent development efforts at Fermilab have been focused on:

● Support for high order maps 

● MAD parser 

● A high level Python shell  

● Correct tune Footprint Computation 

● Better support for Acceleration (e.g. 
mutipoles, transition etc…)
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Machine DescriptionMachine Description
● Until recently, ORBIT had been relying on MAD 

or DIMAD to produce maps and lattice 
functions. The lattice information is read from 
MAD (ascii) output. 

● As a consequence, ORBIT could not internally 
recompute maps.

● The process of importing a machine description 
into ORBIT is cumbersome and potentially error 
prone (e.g. changes in MAD output file format 
between different versions/platforms) 



J.-F. Ostiguy – Space Charge Study Meeting – July 17 2003

A Lex/Yacc based MAD parserA Lex/Yacc based MAD parser
● A Lex/Yacc-based MAD parser was developed in the BP 

dept  a few years ago for internal needs.

● Designed as a generic system usable either for off-line 
translation to another human-readable description 
language or for dynamic definition of objects.

● Few restrictions (no abbreviations, no action commands, 
no use of undefined variables)

● Successfully validated on very large lattice files  (e.g.  
complete Tevatron lattice)  

● BTW: The parser is also used by Synergia
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Mxyzptlk and Mxyzptlk and BeamlineBeamline
(L. (L. MichelottiMichelotti))

● mxyzptlk is a C++ class library to perform automatic 
differentiation to a user-specified order n. It 
provides overloaded operators, trig functions etc ...

● Beamline is a C++ class library build on top of 
mxyzptlk. It provides facilities to create beamlines 
hierarchies, compute lattice functions, 
chromaticities, maps (to order n), map 
concatenations etc ... 
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Mxyzptlk ? Mxyzptlk ? 
Superman's foe from the 5th dimension. 
He will return to his own dimension 
if he spells his name backwards ...
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Why Use the BEAMLINE Class ?Why Use the BEAMLINE Class ?
● Written in C++, just like ORBIT
● The same code automatically supports 1st , 

2nd and or order n maps if desired
● Support for arbitrary misaligments (tilt, 

yaw, offset etc ..)
● Very few assumptionsThis may be relevant 

for smaller rings.
● propagation physics and computation 

completely under user control if 
desired/necessary  (e.g. thin kicks a la 
Tpot)

● BTW: Synergia uses BEAMLINE to compute map coefficients. 

Propagation is handled by IMPACT
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Beamline Class Library Beamline Class Library 
Computational PerformanceComputational Performance

● Initial attempts at using the BEAMLINE library resulted in 
discouraging performance degradation (1-2 orders of 
magnitude !)  

● In MXYZPTLK, polynomials are implemented as doubly linked 
lists. Each list node contains a non-zero monomial coefficient 
as well as an integer which can be uniquely  mapped to actual 
monomial exponents.

● evaluating a polynomial (map) implies traversing a linked list 
(indirections) and recovery of the actual monomial exponents 

● Especially at low orders, it was found necessary to store map 
coefficients and invidual monomial exponents explicitely in 
linear arrays in order to get satisfactory map evaluation 
performance.     
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PropagatorPropagator

● In the beamline library, the Propagator is a functor ( i.e. a function 
object) that determines how a particle is propagated through a beamline 
element.

● Each element is assigned a default propagator, which can be overridden 
by a user-supplied alternate 

● When the element is a Map, the propagator operator() trivially 
evaluates a polynomial in 6N variables for each phase space dimension .  

● Because the Propagator is an object, an alternate  (private) polynomial 
representation can be instantiated by the propagator constructor. 

● Using this technique,  tracking using the facilities provided by the 
beamline library has been verified to be as efficient as with existing 
code. 
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22ndnd Order Map Code  ValidationOrder Map Code  Validation
Simple test: observe the tune spread associated with 2 different momentum 
distributions.

Independently calculated  
tunes:
6.935 H,  6.662 V 

Independently calculated 
chromaticities:
-9.86H,  -6.89V
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ORBIT Code StructureORBIT Code Structure

● ORBIT is structured as “modules” controlled by a high 
level interpreter, SuperCode

● SuperCode was designed to have a C++ -like syntax
● interface code generated from special interface 

definition files by a program : MGen
● Modules could be written in f77, C or C++
● Exported interface from modules is the common 

denominator between all these languages: static 
functions and variables

● BTW: In ORBIT, the shell is an integral part of the 
code. Input syntax checks and runtime diagnostics are 
generated by the shell.    
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Why Preserve the Why Preserve the 
Interpreter/Modules Interpreter/Modules 

Structure ?Structure ?
● A high level interpreter allows for rapid implementation of custom 

features. While the efficiency of a low-level language is required to 
propagate large no of particles, diagnostics and a posteriori analysis can 
benefit from high level language implementations because they are often 
problem-specific.

● If efficiency becomes an issue, functionality implemented at the
interpreter level can be reimplemented into a compiled module without 
affecting existing scripts. 

● The interpreter/module structure promotes well-defined interfaces. This 
makes it easy to contribute new functionality without deep knowledge of 
the entire code.     
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Python ShellPython Shell

Problem: SuperCode is orphaned and poorly documented
Solution: use Python !

● Python is a mature scripting language
● Its object model is highly compatible with that of C++
● It supports operator overloading
● It supports the concept of exceptions
● Good tools are available for interface code generation
● A wealth of publicly available high quality python code is 

available for reuse
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Python/C++ Interface Code Python/C++ Interface Code 
GenerationGeneration

Currently are three systems available:
● SWIG (www.swig.org)  by David Beazley, U of Chicago. Comprehensive system, 

support for most scripting languages. While support for C is excellent, support 
for C++ constructs has serious limitations.  

● SIP (www.riverbankcomputing.co.uk) by Phil Thompson. Similar in philosophy to 
SWIG, but python/C++ specific. Not well documented,  requires special 
interface files

● Boost.python (www.boost.org) by David Abrahams. Python/C++ specific. 
Implemented as a C++ library (mostly header files). Uses template 
metaprogramming techniques to generate interface code; no special program 
needed beyond a C++ compiler.
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Porting StrategyPorting Strategy

● Emulate existing SuperCode data types 
(e.g. Vector, matrix, 3D array)

● As much as possible, emulate existing 
syntax.  
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Boost.python Example 1Boost.python Example 1
#include <iostream>
#include <string>
#include "sc-types.h"
#include "sc-string.h"
#include "Python.h"
#include <boost/python/operators.hpp>
#include <boost/python/class.hpp>
#include <boost/python/module.hpp>
#include <boost/python/handle.hpp>
#include <boost/python/extract.hpp>
using std::complex;
using namespace boost::python;

void wrap_supercode() { 
//  ** ComplexMatrix **  

python::class_<Matrix<complex<Real> > >("ComplexMatrix", init<int,int>())
.def(init<const Matrix<complex<Real> > >())
.def("get",      &Matrix<complex<Real> >::get) 
.def("set",      &Matrix<complex<Real> >::set)
.def("__repr__", &Matrix<complex<Real> >::print)
.def("clear",    &Matrix<complex<Real> >::clear)
.def("resize",   &Matrix<complex<Real> >::resize)
.def(python::self + python::self)
.def(python::self - python::self)
.def(python::self * python::self)
.def(python::self ^ python::self)

;
}
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Boost.python Example 2Boost.python Example 2
void wrap_bump() 
{

class_<Bump>("Bump", no_init)
.def("addIdealBump",     &addIdealBump_wrap, "Add a Bump Node") 
.staticmethod("addIdealBump")
.def("eFoldBump",        &Bump::eFoldBump,   "Routine used to apply an e-fold bump scheme 

with specified start and end points")
.staticmethod("eFoldBump")
.def("eFoldBump2",       &Bump::eFoldBump2,   "Routine used to apply an e-fold bump scheme 

with specified fixed and ramped magnitudes")
.staticmethod("eFoldBump2")
.def("interpolateBumps", &Bump::interpolateBumps, "Routine to do linear interpolation of the 

bumps from input vectors")
.staticmethod("interpolateBumps")
.def("sizeBumpPoints",   &Bump::sizeBumpPoints,   "Sizes vectors used in iterpolating bump 

points, see routine interpolateBumps")
.staticmethod("sizeBumpPoints")
.def_readwrite("xIdealBump",  &Bump::xIdealBump )   

// - "The x value of the ideal bump at a point in time (mm)",
.def_readwrite("xPIdealBump", &Bump::xPIdealBump ) 

// - "The x prime of the ideal bump at a point in time (mrad)",
.def_readwrite("yIdealBump",  &Bump::yIdealBump )   

// - "The y value of the ideal bump at a point in time (mm)",
.def_readwrite("yPIdealBump", &Bump::yPIdealBump )

// - "The y prime of the ideal bump at a point in time (mrad)";
.def_readwrite("bumpOn",      &Bump::bumpOn )          

// - "Switch indicating whether ideal bump is on (==1)";

….
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ORBIT vs PyORBIT ORBIT vs PyORBIT 

/bin/env python
import orbit

runName = orbit.String("Booster")
of1    =  orbit.String(runName) + 
orbit.String(".out")

hist = RealArray(1000)

for i in range(1000):
hist.set(i+1,0.0)

print 'Make a synchronous particle'

TSync  = 0.400;    #  Kinetic Energy (GeV)
mSync  = 1;        #  Mass (AMU)
charge = 1;        # Charge number

orbit.Particles.addSyncPart(mSync, charge, TSync)
orbit.Particles.mainHerd =  
orbit.Particles.addMacroHerd(100)

orbit.TransMap.FNALMapLine(file1, file2);

hist2 = hist2 + hist;

runName = "Booster";
of1    =  runName + ".out";

RealArray hist(1000);
RealArray hist2(1000);

for i=1,1000 {
hist(i) = 0;

}

cout << “Make a synchronous particle” << 
“\n”;

TSync  = 0.400;    // Kinetic Energy (GeV)
mSync  = 1;        // Mass (AMU)
charge = 1;        //charge number

addSyncPart(mSync, charge, TSync);
mainHerd = addMacroHerd(100);

FNALMapLine(file1, file2);

hist2 = hist2 + hist;

c
myfile.s myfile.py
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Tune ComputationTune Computation
● To efficiently produce a (tranverse) tune footprint, ORBIT computes tunes 

by accumulating phase advance in normalized (Floquet) coordinates. 
● This is an approximation since constant action contours are circular only in 

the linear approximation.   
● The normalized coordinates do not include dispersion. To compute the tune 

of an off-momentum particle, the dispersive contribution to the trajectory
must be subtracted off. 

● All collective fields are “frozen” during a tune computation i.e. they 
influence the macro particles, but they are not updated.

● All RF cavities must effectively be turned OFF during a tune computation, 
otherwise the momentum upstream and downstream of a cavity is  
different, leading to erroneous dispersive corrections and erroneous tunes. 
This was not automatically enforced in ORBIT. The effect is obviously 
more noticible the larger dE/E per turn is.     
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Phase AccumulationPhase Accumulation

θ1

θ2 X1,Y1

X2,Y2

Contour distorted by non-linearities

(X2,Y2)   =  M (X1, Y1)

In presence of nonlinearities, averaging 

over multiple turns gives better results.

Weakly nonlinear map
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AccelerationAcceleration

ORBIT currently provides some support for acceleration. 
However, because SNS is an accumulation ring, investing time and
efforts to further develop the existing functionality has not been 
the highest priority of the main developpers (justifiably so !).

The code has relied on externally computed maps, which by 
definition, do not change during acceleration. While this may be an 
acceptable approximation, a more realistic simulation should  
include:

Saturation effects (energy dependent field defects)
Remanent field effects (constant field defects)
Transition crossing (phase jump, pulsed quadrupoles etc ...)    
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Conclusions and StatusConclusions and Status

● FNAL MAD parser integrated into ORBIT 
● Beamline maps tested
● 1st and 2nd order propagation optimized. Execution speed is on par 

with the previous implementation. 
● Python shell work complete and ready for testing. 
● Fixed: tune footprint computation in presence of RF voltage.
● Fixed: incorrect scaling of longitudinal coordinates.
● Fixed:  obscure memory management problems in mxyzpltk
● Work on improved support for acceleration has just begun
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